Аксиомы биологии - Biologia axiomatica (Медников) 1982 год

Скачать Советский учебник

 Аксиомы биологии - Biologia axiomatica (Медников) 1982

Назначение: Книга адресуется широкому кругу читателей. 

Современная биология - это совокупность научных дисциплин, с равных сторон и на разных уровнях изучающих все многообразие живой материн. Можно ли, опираясь на сумму накопленных знаний, построить некую систему теоретических положений, необходимых для понимания специфических отличий живого от неживого? Можно, отвечает автор, и в доступной для неспециалистов форме излагает основные принципы, которые, по его мнению, играют в биологии такую же роль, какую в геометрии — аксиомы.

© "Знание" Москва 1986 

Авторство: Борис Михайлович Медников

Формат:DjVuРазмер файла: 5.84 MB

СОДЕРЖАНИЕ

Оглавление

3 Вступление

20 Аксиома первая

40 Аксиома вторая

82 Аксиома третья

101 Аксиома четвертая и последняя 

127 Заключение

Скачать бесплатный учебник  СССР - Аксиомы биологии - Biologia axiomatica (Медников) 1982 года

СКАЧАТЬ DjVu

{spoiler=ОТКРЫТЬ: - отрывок из учебника...}

 Вступление 

История этой книги не совсем обычна. Как-то мне предложили прочитать на первом курсе биологического факультета МГУ пять вступительных лекций под довольно неуклюжим названием «Введение в специальность». Согласился я не раздумывая, раздумье пришло потом. В каком ключе читать эти лекции?

Вспомнились те далекие годы, когда мы, тоже на первом курсе, слушали лекции «Введение в биологию». Насколько помню, они не удовлетворили меня (и не только меня). Это была какая-то окрошка из начал общей биологии, эмбриологии и цитологии, палеонтологии, генетики и теории эволюции (как они понимались в то время). Естественно, сжать все эти дисциплины в самостоятельный курс не представлялось возможным, лектору пришлось пожертвовать глубиной изложения, да еще приноровить его к уровню познаний недавних школьников. Пользы от такого курса было немного. Теперь я понимаю, что сама идея подобного курса неверна — нужно выбирать между глубиной анализа и широтой обобщений. Если бы читать его на последнем курсе, уже подготовленным студентам, но тогда он, пожалуй, не будет нужен вообще. А для меня такой путь был бы вообще отрезан — за десять академических часов обозреть всю биологию невозможно не только с «высоты птичьего полета», но и со спутника. А потом я задумался: правильно ли мы вообще обучаем биологии?

Представьте такой курс геометрии: сначала слушателям преподносится стереометрия, затем планиметрия, хотя бы теорема Пифагора, и лишь в конце, на последней лекции, перечисляются основные образы (точка, прямая, плоскость), основные соотношения (принадлежать, лежать между, двигаться), аксиомы и постулаты. Пожалуй, такой курс невозможно даже представить. И он не может чему-либо научить. А что делаем мы? Сначала заставляем студентов постигать, как и сами постигали раньше, зоологию и ботанику, цитологию, эмбриологию, потом переходим к теории эволюции и генетике, а до общих начал, аксиом, лежащих в основе науки о живом, дело практически не доходит.

Нельзя ли как-нибудь аксиоматизировать биологию, сформулировать системы аксиом (или постулатов, принципов, основных положений — дело не в названии) ? Эти принципы должны выводиться из накопленного биологией опыта и того, что люди называют «здравым смыслом». Исходя из них, путем чисто логических рассуждений можно было бы строить здание теоретической биологии все выше — от этажа к этажу, укладывать разнородные факты в упорядоченную систему. Вот эти-то аксиомы и можно преподать первокурсникам в качестве введения в биологию.

Естественно, возникает вопрос: почему же математики пошли по этому кажущемуся единственно разумным пути, а биологи нет?

Причины в общем-то понятны. Что бы ни говорили, математика — одна из самых простых наук. Основные ее понятия, хотя бы о той же точке, прямой и плоскости, человек получает из своей практической деятельности задолго до того, как узнает о существовании геометрии. Даже не думая о том, что гипотенуза короче суммы двух катетов, мы, рискуя быть оштрафованными, «срезаем» угол газона. Люди делали устойчивые треножники до того, как сообразили, что через три точки в пространстве, не расположенные на одной прямой, можно провести плоскость, и притом только одну, и экономили строительный материал, сооружая округлые строения и изгороди. Поэтому так просто сформулировать аксиомы в начале курса математики и в дальнейшем идти путем строго логических рассуждений.

Сложен в математике лишь ее язык — набор символов и правил сочетаний этих символов. Но овладев им, каждый может уверенно пользоваться математическим аппаратом. Для этого нужно только уметь логически мыслить. Орудия труда математиков предельно просты — песок Архимеда, грифельная доска, карандаш и бумага. Но и без них можно обойтись — гениальный Эйлер, потеряв зрение в старости, практически не снижал продуктивности своей работы.

Когда я называю аксиомы, лежащие в основе какой-либо науки, простыми, из этого не следует, что проста сама наука. Аксиомы—концентрированное выражение опыта человечества, если угодно, стартовая площадка для последующего взлета. Наверняка читатели задумывались о неравномерности темпов развития наук. Почему математика, в частности геометрия, достигла огромных успехов в античное время, а физика — нет? Архимед и Герои Александрийский были лишь предтечами, физики как науки они не создали. А дело в том, что опыта человечества для создания теоретической математики оказалось достаточно. Физика же должна была ждать своего часа.

Поясню примером: некий итальянский мастеровой в эпоху раннего Возрождения заново открыл архимедов винт и догадался использовать его как насос для подачи воды наверх (такой винт каждый из читателей видел в мясорубке — там он подает мясо к ножам). Но этого изобретателю кажется мало. Он немедленно сооружает устройство из двух баков, верхнего и нижнего, архимедова винта и водяного колеса. По его замыслу колесо должно было вращать винт, а винт подавать воду в верхний бак. Вечный двигатель! Увы, верхний бак быстро пустел и не желал наполняться. Изобретатель без конца совершенствует свое устройство, разоряется, кончает жизнь в нищете, не ведая, что он вместе с другими такими же неудачниками сделал немало для обоснования первого начала термодинамики.

Думаю, что второй закон термодинамики для своего появления должен был дождаться изобретателя паровой машины. Героновский эолипил — первая паровая турбина — в античное время так и остался занятной игрушкой, с его по-

мощью никто не догадался в то время совершить работу. Опыта человечества оказалось недостаточно. Иное дело в геометрии: то, что прямая — кратчайшее расстояние между двумя точками, интуитивно чувствовал и первобытный человек, догоняя мамонта. А когда люди в Древнем Египте и Вавилоне стали делить земельные участки, практический опыт для создания геометрии был накоплен очень быстро. Недаром Энгельс написал на полях рукописи своей «Диалектики природы»: «До сих пор выставляют

хвастливо напоказ только то, чем производство обязано науке; но наука обязана производству бесконечно большим». Как только производство накопило вековой опыт, Парижская академия наук перестала рассматривать прожекты вечных двигателей задолго до того, как было сформулировано первое начало, или закон, термодинамики — всем известный закон сохранения энергии.

Со вторым началом дело сложнее. Не уверен, что все читатели о нем знают. Во всяком случае, мой опрос примерно пятидесяти человек (не физиков и не инженеров) дал не очень положительные результаты.

Есть несколько равноценных формулировок второго начала. Вот несколько из них:

1) невозможно построить вечный двигатель второго рода, то есть машину, которая сколь угодно работает за счет тепла окружающей среды;

2) работу можно получить лишь путем выравнивания перепадов каких-либо параметров системы (температур, давлений, электрических потенциалов);

3) в замкнутой (то есть не получающей энергии извне) системе прирост энтропии всегда положителен;

4) все самопроизвольно протекающие процессы в замкнутых системах идут в сторону наиболее вероятного состояния системы.

Для биологии наибольшее значение имеет четвертая — самая общая — формулировка.

И лишь после того как физики и инженеры поняли незыблемость второго начала, оно было строго обосновано методами теории вероятностей (статистическая физика).

Физиков, отрицающих второе начало, единицы, и к ним сейчас не относятся серьезно. Иное дело биологи. Мне, например, доводилось слышать вполне серьезное сообщение о неких бактериях, которые растут за счет охлаждения окружающей среды, то есть представляют вечный двигатель второго рода (по-видимому, у экспериментаторов был не в порядке калориметр). Гораздо чаще биологи вроде бы не отрицают второе начало, а защищают какое-нибудь положение, которое в неявной форме ему противоречит.

К чему я веду этот разговор? К тому, что сейчас, когда изучение жизни ведется уже на молекулярном уровне, наше познание ее достигло уже такой стадии, что можно сформулировать основные аксиомы (или постулаты, начала, если хотите) биологии, которыми мы должны руководствоваться в дальнейшей работе.

Какиэд условиям они должны удовлетворять? Прежде всего, они не должны противоречить законам физики, ибо живая природа состоит из тех же атомов и полей, что и неживая. Подобно тому как летящий самолет не отрицает закона всемирного тяготения, живой организм во всех деталях своего строения и поведения не опровергает законов физики. Это не значит, что мы сводим тем самым биологию к физике,— мы выводим биологию из физики, а это разные вещи.

Все законы физики в конечном счете имеют форму запретов. Нельзя получить энергию из ничего, нельзя понизить энтропию в замкнутой системе, не подведя к ней энергии, нельзя двигаться со скоростью большей, чем скорость света, и т. д., и т. д. Все эти запреты в полной мере действенны в мире живой природы; однако к ним присоединяются другие, специфичные для биологии, но не противоречащие первым. Специфичные для биологии аксиомы выводятся из физических аксиом.

Энгельс называл «физику механикой молекул, химию — физикой атомов и далее биологию — химией белков» и писал, что он желает этим выразить «переход одной из этих наук в другую,— следовательно, как существующую между ними связь, непрерывность, так и различие, дискретность обеих». Но отсюда следует, что, например, достижения физики могут быть использованы как аксиомы для химии. Так оно и есть: некоторые физхимики уже поговаривают о сведении химии к физике, ибо любую реакцию и свойства любого вещества можно свести к уравнениям квантовой механики. Тем самым они возводят в абсолют связь и не обращают внимания на различие. Это уже загиб: химия, несомненно, самостоятельная наука, но она выводится из физики.

Точно так же, на мой взгляд, называя биологию химией белков (мы бы теперь добавили: и нуклеиновых кислот), Энгельс имел в виду то, что аксиомы биологии, только ей присущие, нужно доказывать

на уровне химии и физики. Для многих это непреодолимое затруднение: если-де это аксиома, ее

нельзя доказать, а если ее можно доказать, то это не аксиома. Такой подход явно эффективен.

Вообще вопрос о выводимости (нередко пишут: сводимости) одних форм движения материи к другим до сих пор служит предметом дискуссий философов.

Что такое «сводимость»? Вот как отвечает на этот вопрос советский философ Б. М. Кедров:

«Механисты употребляют его в смысле отрицания качественной специфики высшей формы движения, полного ее исчерпания свойствами и законами низшей формы... Совершенно отличный смысл в то же самое слово вкладывают ученые, когда они устанавливают структурные и генетические связи между высшим и низшим. Высшее не исчерпывается низшим, но сводится к нему в структурном и генетическом отношении... В этом же—структурном и генетическом— смысле жизнь сводится к химии и физике, поскольку биологическое движение возникает и образуется из химического и физического, хотя и не исчерпывается ими в качественном отношении».

Полагаю, что в настоящее время только подобная точка зрения, как и во времена Энгельса, соответствует тому багажу фактов, который имеет современное естествознание.

Аксиомы биологии не должны противоречить основному принципу современного естествознания — принципу причинности.

Увы, биология, начиная с учителя Александра Македонского великого философа Аристотеля, то и дело грешила против этого великого принципа и продолжает в лице отдельных своих представителей делать это и сейчас.

Самая суть принципа причинности в том, что причина по времени должна предшествовать следствию. (Обычно философы толкуют его шире, но для нас в первую очередь важна именно эта сторона.) События, разделяемые каким- либо промежутком времени, неравноправны: будущее не влияет на прошлое. Этот смысл выражен в древнегреческой пословице: «Над

прошедшим даже боги не властны». И в русской поговорке: «Знал бы где упасть, соломки бы подостлал».

Но согласно теории относительности промежуток времени между двумя событиями — величина, зависящая от скорости движения наблюдателя. Если скорость наблюдателя меньше скорости света в вакууме, одно событие всегда происходит раньше другого. Для «сверхсветового» наблюдателя порядок событий может оказаться обратным, и если события связаны друг с другом причинной связью, то причина и следствие меняются местами. Так, причиной вылета пули из канала ствола явится попадание ее в мишень, а причиной изменения генетической программы организма будет благоденствие его потомков. Мы вступаем в область столь неразрешимых парадоксов, что единственный выход из этого — признать невозможность «сверхсветового наблюдателя»  .

Попытки обнаружить нарушения принципа причинности в эксперименте позволили прийти к выводу, что он справедлив и для расстояний, в десять миллионов раз меньших, чем диаметр атома. Предел про-верке пока ставит мощность современных ускорителей. Вся окружающая нас природа ему подчиняется, и живая не является исключением. Нарушить его можно только в не эйнштейновском мире, где скорость света в вакууме не является пределом.

Аристотель же создал учение о некоей конечной цели — причине явления (так называемая «конечная причина»). Две тысячи лет это учение почти никем не подвергалось сомнению, и лишь в эпоху Возрождения против него начали восставать. Уже Френсис Бэкон писал, что с научной точки зрения «конечная причина» не нужна и вредна; прибегать к ней для объяснения какого-либо явления допустимо в метафизике, но весьма опасно в науке, так как она сразу закрывает путь для эксперимента (недаром Ньютон порой восклицал: «О физика, спаси меня от метафизики!»).

Слов нет, Аристотель был гениальным мыслителем. Но так уж получилось, что он стал злым гением естествознания, затормозив его развитие на добрые сто поколений. Он, в частности, вслед за Платоном отказался от основного принципа материалистической методологии — от практики как критерия истины. Математике это особого вреда не принесло, ибо ее аксиомы были слишком очевидны. Иное дело естествознание. Ограничусь лишь одним примером.

Путем логических рассуждений Аристотель пришел к выводу, что тяжелый камень падает быстрее легкого. И ему даже не пришло в голову проделать простейший опыт: попросить кого-нибудь из своих учеников попроворнее залезть на дерево лицейской рощи с двумя камнями разного веса и выпустить их из рук одновременно. А самому стать рядом, не так близко, чтобы камни не упали на голову, но и не так далеко, чтобы увидеть — камни коснутся земли одновременно. Даже сама мысль об этом казалась ему неприемлемой, низменной, чуждой философии.

Впрочем, что жалеть о том, чего не случилось. Опять же — действует закон причинности, запрещающий влиять на прошлое.

Как бы то ни было, физика начала освобождаться от влияния Аристотеля фактически с XV—XVII веков — времени Галилея, Паскаля, Декарта, Гюйгенса и Ньютона. И основатель Академии Линчеев Федерико Чези с гордостью писал Галилею: «Те, кого примем, не будут рабами ни Аристотеля, ни какого-либо другого философа, а людьми благородного и свободного образа мыслей в исследовании природы». Вот какой клин вбил Ста- гирит между философией и естествознанием! Отголоски этого спора дошли и до XVIII века. Это хорошо обыграно А. Н. Толстым в «Петре Первом»:

«...А что, господин Паткуль, англичане Фергарсон и Грене — знатные ученые?

Будучи в Лондоне, слыхал о них. Люди не слишком знатные, сие не философы, но более наук практических...

Именно. От богословия нас вши заели...»

Итак, философия стала синонимом богословия и антиподом практики. Немалую роль в этом сыграл тот же Аристотель, поднятый на щит средневековыми схоластами. Лишь в созданной Марксом и Энгельсом философии критерий практики получил достойное место. Но, увы, аристотелизм в биологии занял слишком прочную позицию. Биологические системы сложнее механических, и процесс накопления новых данных шел здесь с гораздо меньшей скоростью.

Поэтому даже сейчас Аристотелевы положения о конечных причинах имеют успех у ряда естествоиспытателей. Ведь на них неявно основаны учения о наследовании приобретенных признаков, изначально приспособительной, целесообразной изменчивости, ассимиляции условий внешней среды. И так далее.

В последнее время в научной и в научно-популярной литературе усиленно обсуждается вопрос о теоретической биологии: можно ли

превратить науку о живом из груды как будто бы не связанных друг с другом факте® в стройное здание, где все положения и факты связаны друг с другом и все вытекают из непреложных, продиктованных всем человеческим опытом аксиом?

Мнения высказываются самые разнообразные. Мне, например, доводилось слышать пессимистический вывод, гласящий, что в отличие от теоретической физики теоретическую биологию создать принципиально невозможно. Обосновывается этот вывод довольно просто. Ни об электроне, ни об атоме не скажешь, что каждый из них уникален, единственный в своем роде. А вот в биологии что ни объект, то «неповторимая индивидуальность» Уникальные клетки слагают уникальные организмы, из организмов состоят популяции, из популяций— виды, а сколько их и как они разнообразны!.. Видимо, это различие объектов биологии и физики и имел в виду Макс Дельбрюк — физик и биолог одновременно, когда писал: «Зрелого физика, впервые сталкивающегося с проблемами биологии, ставит в тупик то обстоятельство, что в биологии нет «абсолютных явлений». Каждое явление представляется иным в разных местах и в разное время. Любое животное, растение или микроорганизм... лишь одно звено в эволюционной цепи изменяющихся форм, ни одна из которых не остается сколько-нибудь постоянной».

Большинство исследователей придерживаются иного мнения: теоретической биологии еще нет, но она возможна. Просто мы не знаем пока всех принципов (аксиом, исходных положений), которые должны лежать в ее фундаменте. Так, математик В. В. Налимов полагает, что на пути создания теоретической биологии стоит .неодолимое сегодня препятствие — чрезвычайная сложность исследуемых объектов. Она, эта сложность, не позволяет представить явление, именуемое жизнью, короче, чем это удается сделать при непосредственном наблюдении. Теория же, считает Налимов,— это компактное построение. Любопытно, что по меньшей мере одно такое построение он признает — эволюционную теорию Дарвина.

Как писал в своей последней статье недавно скончавшийся один из крупнейших .наших генетиков Н. В. Тимофеев-Ресовский, теоретическая биология не создана потому, что «нет (или не было до самого последнего времени) общих естественно исторических биологических принципов, сравнимых с теми, которые давно, начиная с XVIII в., существуют в физике». Правда, два принципа Николай Владимирович все же назвал, об одном высказался предположительно.

Первый из названных им принципов известен уже более 100 лет. Это дарвиновский естественный отбор. Второй — размножение, репликация и редупликация наследственных молекул. В основу этого принципа легла идея, прозорливо высказанная учителем Тимофеева-Ресовского Н. К. Кольцовым, а затем подхваченная и развитая самим Николаем Владимировичем, Дельбрюком, П. Дираком и другими учеными.

Странно, что Тимофеев-Ресовский не назвал еще один общебиологический принцип, который имеет для науки о живом не меньшее значение, чем естественный отбор и размножение наследственных молекул. Может быть, потому, что он сам его и предложил? Это так называемый принцип усилителя (усиления), именно он и делает дарвиновскую эволюцию возможной.

Обо всем этом нам предстоит поговорить подробно, а принципу усиления будет отведена даже целая глава. Здесь же я хотел бы сказать вот что. Да, принцип естественного отбора очень важен, но вряд ли его можно признать аксиомой. Он скорее своего рода теорема, которая выводится из более простых. То же самое относится и к принципу конвариантной (точной не на все 100%) редупликации. Его также можно разложить на два начальных, действительно исходных, аксиоматичных.

Теперь о принципе, о котором Тимофеев-Ресовский высказался предположительно, а точнее — неопределенно. По мнению Николая Владимировича, естественный отбор должен непременно вести к прогрессивной эволюции.  

{/spoilers}

НОВЫЕ ПУБЛИКАЦИИ УЧЕБНИКОВ И КНИГ ПО БИОЛОГИИ И ЗООЛОГИИ

БОЛЬШЕ НЕТ

УЧЕБНИКИ ПО БИОЛОГИИ - ЗООЛОГИИ СПИСКОМ И ДРУГИЕ РАЗДЕЛЫ БИБЛИОТЕКИ ВС (2)

Еще из раздела - БИОЛОГИЯ, ЗООЛОГИЯ

БОЛЬШЕ НЕТ

ПОПУЛЯРНЫЕ УЧЕБНИКИ и КНИГИ ПО БИОЛОГИИ И ЗООЛОГИИ

БОЛЬШЕ НЕТ
Яндекс.Метрика